Week 3 Detailed Learning Outcomes
At the end of your learning for this week, you should be able to master the following contents.
Actuarial Practice #
Risk Management #
- Understand the classification of risks according to likelihood and impact
- Explain what the top long term risks are according to likelihood and impact
- Explain the main elements of the definition of risk management, and how they translate in the insurance context
- Provide examples of typical actuarial work in relation to risk management in APRA regulated companies
- Understand the basic missions of APRA and ASIC, and how they differ
- Explain what Enterprise Risk Management is
- Discuss evidence of climate change
- List and explain four key relevant areas to actuarial practice, which will likely be impacted by climate change
- Discuss how actuaries can make a difference in addressing climate risk
Actuarial Techniques #
PV and accumulated value of annuity-immediate and annuity-due #
Note that “annuity-immediate” and “annuity in arrears” are equivalent names.
Formulae to memorize #
$${a}_{\angl{n}} = \frac{1-v^n}{i}$$
$$\ddot{a}_{\angl{n}} = (1+i){a}_{\angl n} = \frac{1-v^n}{d}, \quad \text{where } d=1-v .$$
$${a}_{\angl{n}} \approx n v^{\frac{n+1}{2}}$$
$${\ddot{a}}_{\angl{n}} \approx n v^{\frac{n-1}{2}}$$
Formulae with interpretation #
$$1 = i {a}_{\angl{n}} + v^n$$
$$(1+i)^n = i {s}_{\angl{n}} + 1$$
Properties #
$${a}_{\angl{n}} < {\ddot{a}}_{\angl{n}} < n$$
$${a}_{\angl{n}} \downarrow i, {s}_{\angl{n}} \uparrow i$$
$${\ddot{a}}_{\angl{n}} = 1 + {a}_{\angl{n-1}}$$
$${a}_{\angl{n}} \text{ with rate of interest }i\text{ is written as } {a}_{\angl{n} @ i}\text{ or }{a}_{\angl{n} i}$$
\(m\)
-year deferred annuities
#
$$_{m|}{a}_{\angl{n}} = v^m {a}_{\angl{n}}$$
$$_{m|}{\ddot{a}}_{\angl{n}} = v^m {\ddot{a}}_{\angl{n}}$$
Other formulae #
$$_{m|}{a}_{\angl{n}} = {a}_{\angl{n+m}} - {a}_{\angl{m}}$$
$$_{m|}{\ddot{a}}_{\angl{n}} = {\ddot{a}}_{\angl{n+m}} - {\ddot{a}}_{\angl{m}}$$
$$_{m|}{\ddot{a}}_{\angl{n}} = (1+i) _{m|}{a}_{\angl{n}}$$
$$_{m|}{a}_{\angl{n}} \approx n v^m v^{\frac{n+1}{2}} = nv^{m + \frac{n+1}{2}}$$
where$$m + \frac{n+1}{2} = \frac{(m+1) + (m+2) + ... + (m+n)}{n}.$$
$$_{m|}{\ddot{a}}_{\angl{n}} \approx n v^m v^{\frac{n-1}{2}} = nv^{m + \frac{n-1}{2}}$$
where$$m + \frac{n-1}{2} = \frac{(m+1) + (m+2) + ... + (m+n-1)}{n}.$$
Annuities payable \(m\)
-thly (more frequently) ( \(m=2,4,12,52,365,\ldots\)
)
#
$${a}_{\angl{n}}^{(m)} = v^n {s}_{\angl{n}}^{(m)}$$
$${s}_{\angl{n}}^{(m)} = (1+i)^n {a}_{\angl{n}}^{(m)}$$
$${\ddot{a}}_{\angl{n}}^{(m)} = v^n {\ddot{s}}_{\angl{n}}^{(m)}$$
$${\ddot{s}}_{\angl{n}}^{(m)} = (1+i)^n {\ddot{a}}_{\angl{n}}^{(m)}$$
important formulae #
$${a}_{\angl{n}}^{(m)} = \frac{1-v^n}{i^{(m)}}$$
This is derived from the first principle where\(\left(1+\dfrac{i^{(m)}}{m} \right)^m = 1+i\)
.$${\ddot{a}}_{\angl{n}}^{(m)} = \left(1+i\right)^{\frac{1}{m}} {a}_{\angl{n}}^{(m)} \ \ \ \ \ \ \left({\ddot{a}}_{\angl{n}}^{(m)} > {a}_{\angl{n}}^{(m)} \right)$$
Alternative expressions by time unit change #
- New time unit:
\(\frac{1}{m}\)
th of a year \(j = \dfrac{i^{(m)}}{m}\)
: effective interest rate per new time unit\(v^{\frac{1}{m}} = \dfrac{1}{1 + \frac{i^{(m)}}{m}}\)
: discount factor per new time unit
Hence:
$${a}_{\angl{n}}^{(m)} = \frac{1-v^n}{i^{(m)}} = \frac{1}{m} \frac{1-(v^{\frac{1}{m}})^{nm}}{\frac{i^{(m)}}{m}} = \frac{1}{m} {a}_{\angl{nm}@ j}.$$
Annuities payable less frequently #
- Change time unit: 2-year
- 2-year discount factor:
\(v^2\)
- 2-year effective interest rate:
\(1+j = (1+i)^2\)
Hence:
$$PV = {a}_{\angl{n}@j} = \frac{1-(v^2)^n}{j}$$
$$PV = {\ddot{a}}_{\angl{n}@j} = (1+j){a}_{\angl{n}@j} = (1+j) \frac{1-v^{2n}}{j}$$
Remarks:
-
\(PV\)
can be derived from first principles. -
How to find the
\(PV\)
of an annuity-immediate payable every 1.5 years for 30 years.
Annuities with varying interest rates #
For the annuity-immediate:
$$PV = {a}_{\angl{n_1}@i_1} + (1+i_1)^{-n_1} {a}_{\angl{n_2}@i_2}$$
Accumulated Value:
$${s}_{\angl{n_1}@i_1} (1+i_2)^{n_2} + {s}_{\angl{n_2}@i_2}$$
Annuities with varying benefits (payments) #
$$PV = {a}_{\angl{2n}@i} + {a}_{\angl{n}@j} = v {\ddot{a}}_{\angl{n}@j} + 2{a}_{\angl{n}@j}$$
where \(1+j = (1+i)^2\)
.