Week 7 Detailed Learning Outcomes
Actuarial Practice #
n/a #
Actuarial Techniques #
Characteristics, causes and trends of mortality experience #
- Explain why and how mortality can change from one table to another, from one group to another.
- Explain what we mean by “rectangularisation” of the survival function.
- Describe typical characteristics of mortality rates (shape, trends)
Mathematical models of mortality #
- Gompertz Law of mortality:
$$\mu_x = Bc^x \Rightarrow {_tp}_x = \exp\left\{-\frac{B}{\log C} (c^x-1)\right\}.$$
Paremeters\(B\)
and\(c\)
in Gompertz Law can be found if two values for\(\mu_x\)
are given. - Makeham’s Law of mortality:
$$\mu_x = A + Bc^x,\quad A,B>0 , \; c>1.$$
Parameters\(A\)
,\(B\)
, and\(c\)
in Makeham’s Law can be found if three values for\(\mu_x\)
are given.
The relationship between \(T(x)\)
and \(K(x)\)
#
\(K(x) = [T(x)]\)
: integer part of\(T(x)\)
\(_tp_x = \frac{S(x+t)}{S(x)} = Pr(T(x) > t)\)
\(Pr(K(x) = k) = _kp_x - _{k+1}p_x\)
\(e_x = E(K(x)) = \sum_{k=1}^{\infty} {_k p_x} = \sum_{k=1}^{\infty} \frac{l_{x+k}}{l_x}\)
\(\stackrel{o}{e}_x \approx e_x +\frac{1}{2}\)
, as\(T_x \approx K(x) + \frac{1}{2}\)
Mesures of fertility #
Crude Birth Rate ( \(\text{CBR}\)
)
#
$$ \text{CBR} = 1000 \times \frac{\text{Number of live births}}{\text{Population size (in the middle of a year)}}$$
General Fertility Rate ( \(\text{GFR}\)
)
#
$$ \text{GFR} = 1000 \times \frac{\text{Number of live births}}{\text{Number of women aged [15,49]}}>\text{CBR}$$
Age Specific Fertility Rate ( \(\text{ASFR}_x\)
)
#
$$\text{ASFR}_x = 1,\!000 \times \frac{\text{Number of live births by women aged [x,x+1)}}{\text{Number of women aged [x, x+1)}}$$
Total Fertility Rate ( \(\text{TFR}\)
)
#
$$\text{TFR} = \sum_{x=15}^{49} \text{ASFR}_x$$
Comparison of \(\text{TFR}\)
with \(\text{GFR}\)
#
We have
$$\text{ASFR}_x = 1,\!000 \times \frac{b_x}{w_x}$$
and hence
$$\text{TFR} = 1,\!000 \times \sum_{x=15}^{49} \frac{b_x}{w_x} = \sum_{x=15}^{49} ASFR_x$$
which means
\begin{eqnarray*} \text{GFR} &=& 1,\!000 \times \frac{\sum_{x=15}^{49} b_x}{\sum_{x=15}^{49} w_x} \\ &=& 1,\!000 \sum_{x=15}^{49} \frac{b_x}{w_{15}+w_{16}+...+w_{49}} \\ &=& 1,\!000 \times \sum_{x=15}^{49} \frac{w_x}{w_{15}+w_{16}+...+w_{49}} \frac{b_x}{w_x} \\ &=& \sum_{x=15}^{49} \theta_x \text{ASFR}_x, \end{eqnarray*}
(a weighted average of \(ASFR_x\)
), where \(\theta_x = \frac{w_x}{w_{15}+...+w_{49}}\)
(percentage of women aged \(x\)
to total women at reproductive age).
\(\text{ASFR}_x\)
over an age group (e.g. 15-19 following the previous table)
#
\begin{align*} \text{ASFR} =& 1,\!000 \frac{\text{Number of live births from women aged 15-19}}{\text{Number of women aged 15-19}} \\ =& 1,\!000 \frac{b_{15}+b_{16}+b_{17}+b_{18}+b_{19}}{w_{15}+w_{16}+w_{17}+w_{18}+w_{19}} \\ =& 1,\!000 \sum_{x=15}^{19} \tau_x ASFR_x, \end{align*}
where
$$\tau_x = \frac{w_x}{w_{15}+w_{16}+w_{17}+w_{18}+w_{19}}, \quad x = 15,16,17,18,19.$$
Gross Reproduction Rate ( \(\text{GRR}\)
)
#
- We have
$$\text{ASFR}_x^f = 1,\!000 \times \frac{\text{Number of live female births}}{\text{Number of women aged [x,x+1)}}.$$
which then leads to$$\text{GRR} = \sum_{x=15}^{49} \text{ASFR}_x^f.$$
- The sex ratio at birth is typically 1.05. Hence, we can use
$$ASFR_x^f \approx \frac{1}{2.05} ASFR_x , \quad x= 15, 16,..., 49.$$
as an approximation. - To sustain population we typically require (replacement level fertility rate)
$$TFR \geq 2.1 \Longleftrightarrow GRR \geq \frac{2.1}{2.05} = 1.024 \;\text{(approx)}.$$
Net Reproduction Rate ( \(\text{NRR}\)
)
#
- We have
$$\text{NRR} = \sum_{x=15}^{49} ASFR_x^f \ \frac{l_{x+\frac{1}{2}}}{l_0}<\text{GRR}.$$
- One can use the approximation
$$l_{x+\frac{1}{2}} \approx \frac{l_x+l_{x+1}}{2}$$
- We typically need
\(\text{NRR} \geq 1\)
to sustain population.
Fertility vs Reproduction Rates #
- Explain the difference between fertility and reproduction rates.
- Contrast both in developing vs developed countries.
Population projections #
- Polynomial Model: for given
\(P_0\)
$$P_t = P_0 + \sum_{i=1}^n a_i t^i,$$
where\(a_i\)
,\(i=1,\ldots,n\)
, are the\(n\)
required parameters. - Linear Model (special case of polynomial model): for given
\(P_0\)
$$P_t = P_0 + at = P_0(1+bt), \;\text{where} b=\frac{a}{P_0}$$
is the simple annual growth rate. Note,$$P_{t_2} = P_{t_1} + a(t_2-t_1), \ t_1< t_2.$$
- Geometric Growth Model: for given
\(P_0\)
$$P_t = P_0 (1+r)^t,$$
where\(r>0\)
is the compound rate of growth per unit time. Note,\(P_{t_2} = P_{t_1}(1+t)^{t_2-t_1}, \ t_1< t_2\)
- Logistic Model: for given
\(P_0\)
$$P_t = \frac{1}{A+Be^{-rt}}, $$ where\(A>0\)
,\(B>0\)
, and\(r>0\)
are required parameters. Note, we have\begin{eqnarray*} P_0 &=& \frac{1}{A+B}\;\text{and}\\ P_\infty &=& \frac{1}{A}. \end{eqnarray*}